5-Feb-25—12:44 PM Resets & Interrupts

b EEL 4744

EEL4744C: 1P Apps

* Interrupt motivation (polling example)
* Interrupt description

* Interrupt-driven I/O
> Interrupt Protocol Look into my ...
> Preemptive-Resume Priority Interrupts
> Vectored Interrupt

* Resets and Interrupts in XMEGA, GCPU++

> Resets and Interrupts Priority
> Interrupt and Reset Vector Assignments
— Pseudo-vector assignments
> Reset and Interrupt Processing
> Interrupt vector and pseudo-vector examples

* XMEGA interrupt details

Textbook (ch 10), doc8331 (sec 12-14),
doc8385 (sec 14), External Interrupt.asm

{EEL 4744

EEL4744C: 1P Apps

Polling Example

* You used polling in lab 2 when you are tasked to
change some outputs based on the value of a
specific input

* In the polling method, the uP “polls” an input or

the status of a bit (or group of bits)

>1f the bit(s) have the proper value(s), then an action
should be taken

>1If the bit(s) do not have the proper value(s), then the
bit(s) will be polled again, and again, and again, ...

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 1

5-Feb-25—12:44 PM Resets & Interrupts

b EEL 4744

EEL 4744C: UP AppS

Interrupt Description

* In the interrupt-driven alternative to polling, a
peripheral or an I/0O device that is ready for service
indicates so by “interrupting” the uP

« If the device is allowed to interrupt, then the uP will
complete the execution of the current instruction,
save the processor status (the CPU registers, except
the SP) on the stack, and branch to a special location
(interrupt vector address) to execute a special
subroutine (ISR) that will service the interrupting

device. For XMEGA*: PCL. PCM., PCH *Careful! XMEGA
stores NO status info

__ For GCPUH+:\ 'pr pey, yL, YH, XL, XH, A, B, and CCR

EER EEL 4744 Poling or Interrupts?

EEL 4744C: UP AppS

* Look at your phone

>Imagine it never making a noise, but having to look at it

to know if someone is calling, texting, etc.
— This is called polling

>Instead, your phone makes a sound and/or vibrates to let

you know that something new is available
— This is called interrupting

Normal Processing S Interrupt Service Routine

PN g
- . : 2 .@ blah, blah...
- &4

4

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 2

5-Feb-25—12:44 PM Resets & Interrupts

bl EEL 4744

EEL4744C: 1P Apps

uP Interrupts

* When a pP peripheral needs an action, it can
generate an interrupt
>The interrupt stops the processor from whatever it was
doing and allows an important action to start
>Then, special interrupt instructions (within something
called an interrupt service routine or ISR), will run
>When the ISR is complete, the uP goes back to what it
was doing
* There are two systems that will generate an
interrupt in our early labs (and others are possible):
>External Pins
>Timer

. EEL 4744 — File 10
Arroyo

F 4 EEL 4744
Interrupt-

driven I/O

* Processing interrupts

Hardware

Doty: Fig 6.7-6

Higher

Optional
Priority

Hardware

Disable Interrupts Hardware may
Save Processor State not save entire
Acknowledge Interrupt processor state

1 r

Determine Highest
Priority Interrupting
Device This o

ten
* done in software

Branch to Interrupt
Service Routine

I .y

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 3

5-Feb-25—12:44 PM Resets & Interrupts

E 0 | EEL 4744

EEL4744C: 1P Apps

Interrupt-driven I/O

* Daisy-chain priority and polling logic

- T e {_._ - |

' Device 0| : Device 1 1[I Device N |

Grant { | G Grant i : Grant }

GO] | > 1 | i | |

T P! 1 |

L] || !

Int:rrup:Ed IROE, ,_P\ = : IRQ; —* P, t : :
Acknowiedee S > A 0o : Fig 6.7-7
INT ACK i 1 HE]
[11 I

i i (. Devi 1

L__ DevieO 4 | _ Devicel 5 ___ M=l ___J

Eid EEL 4744
Interrupt-driven I/0

- Generation Tristate Vector Address
. Buffer 4 N
of a device Gates JY A
interrupt (,
vector _
dd Device .
aadaress Identity
Code N >
or 3
Interrupt)
Vector Address .
R [
EE - |
Device Grant Yy Y

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 4

5-Feb-25—12:44 PM Resets & Interrupts

i EEL 4744

Save } Will not be needed if the

hardware automatically does this.

Interrupt- Foer
driven /O

Clear Device 0
Interrupt Flag

Device 0
Interrupt

Branch to Device 0
Service Routine

Clear Device 1
Device 1 Yes Interrupt Flag

Interrupt
?

Branch to Device 1
Service Routine

* Determining interrupting
device through software
polling

Clear Device n

Device n Yes Interrupt Flag

Interrupt Branch to Device n
? Service Routine

Return from
~———— Service Routine

Restore Processor
State

Enable Interrupts

Doty: Fig 6.7-9
‘

{EEL 4744

EEL4744C: 1P Apps

Interrupt_ ve Service
° rocessor State Interrupt Source
driven /O [:

" \

Return
10
Poll Routine

Service
Interrupt Source

* Interrupt service
routine flowchart X

Restore

>Vectored interrupts (a) Processor State
>Software polling (b)

1

Enable Interrupts

A

Return

From Interrupt _—
Doty: Fig 6.7-10

EL 4744 — File 10
& Arroyo

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 5

5-Feb-25—12:44 PM Resets & Interrupts

: A EEL 4744 Vec Addr Interrupt Source
' ’ FFD6, D7 Serial Comm. Interface (SCI)

ezacip Aops FFDS8, D9 Serial Peripheral Interface (SPI)
FFDA, DB Pulse Accumulator Input Edge
FFDC, DD Pulse Accumulator Overflow
FFDE, DF Timer Overflow
FFEO, E1 Timer Output Compare 5

GC PU++ FFE2, E3 Timer Output Compare 4

FFE4, ES Timer Output Compare 3

Interrupt FFE6, E7 Timer Output Compare 2
FFES, E9 Timer Output Compare 1

and Re S et FFEA, EA Timer Input Capture 3

FFEC, ED Timer Input Capture 2

FFEE, EF Timer Input Capture 1
VGCtOI’S FFFO0, F1 Real Time Interrupt

FFF2, F3 IRQ

FFF4, F5 XIRQ

FFF6, F7 Software Interrupt (SWI)

FFF8, F9 [llegal Opcode

FFFA,FB Computer Operating Properly (COP)
FFFC, FD Clock Monitor

FFFE,FF RESET

Pseudo Vector Interrupt Source
$00C4-$00C6 Serial Comm. Interface (SCI)

bl $00C7-$00C9 Serial Peripheral Interface (SPI)
e $00CA-$00CC Pulse Accumulator Input Edge
$00CD-$00CF Pulse Accumulator Overflow
$00DO-$00D2 Timer Overflow
GCPU++ EVBU $00D3-$00D5 Timer Output Compare 5

o $00D6-$00D8 Timer Output Compare 4
Intel lupt PSCUdO_ $00D9-$00DB Timer Output Compare 3

: $00DC-$00DE Timer Output Compare 2
VeCtorS (Wlth $00DF-$00E1 Timer Output Compare 1

BUFF ALO) $00E2-$00E4 Timer Input Capture 3
‘ $00E5-$00E7 Timer Input Capture 2
$00E8-$00EA Timer Input Capture 1
BUFFALO memory dump: ggggg%gﬁg ﬁfgl s dneerrupt
EGE B0 4 $00F1-$00F3 XIRQ
FFD8: 00 C7 00 CA 00 $00F4-$00F6 Software Interrupt (SWI)
FFEO: 00 D3 00 D6 00 $00F7-$00F9 Illegal Opcode
FFE8: 00 DF 00 E2 00 $O00FA-$SOOFC Computer Operating Properly (COP)
FFFO: 00 EB 00 EE 00 $00FD-$00FF Clock Monitor

FFF8: 00 F7 00 FA 00 Vector Addr Interrupt Source

FFD6, D7 Serial Comm. Interface (SCI)
FFEOQ, E1 Timer Output Compare 5
FFFO, F1 Real Time Interrupt

Pseudo FFF2, F3 IRQ

Vector FFFE, FF RESET

Reset

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 6

5-Feb-25—12:44 PM

{EEL 4744

EEL4744C: 1P Apps

Interrupt Vectors
FFD6| /00N |

- \c4] [scrL
AN

FFD7

FFFA '@i COP H
FFFB| \FA/ |copr L
00 |

FFFC Clock Mon H
FFFD Clock Mon L

FFFE| B6 |Reset H
FFFF m Reset L

Resets & Interrupts

Interrupt Vectors & Interrupt
Pseudo-vectors for GCPU++

with BUFFALO

Pseudo-Interrupt Vectors

SCI ISR H|SCI H
SCI ISR L|SCI L

JMP SCI_ISR

00C5
00C6

JMP COP_ISR

(Q0FA]__7E___|COP_Mon_JMP
00FB|COP ISR H|COP Mon H

00FC|COP ISR L|COP Mon L

00FD Clock Mon_JMP
00OFE|CM ISR H|Clock Mon H

00FF | CM ISR L |Clock Mon L

HIGHEST

{EEL 4744

EEL4744C: 1P Apps

GCPU++ Resets
and Interrupts
Flow Chart (1/2)

* Processing flow out

of reset (part a)

University of Florida, EEL 4744 — File 10

© Drs. Schwartz & Arroyo

POWER-ON RESET
(POR)
¢ (@G RESET) PRICRITY
DELAY 4064 E CYCLES _ FML\
(CLOCK M
((WITHCME = 1)) LOWEST
COP WATCHDOG
TIMEOUT
LOAD PROGRAM COUNTER -

WITH CONTENTS OF Y (WITHNOCOP = 0)

SFFFE, FFFF (VECTOR FETCH) TR0 PROGRAM COUNTER

WITH CONTENTS OF
$FFFC, FFFD (VECTOR FETCH) LOAD PROGRAM COUNTER
WITH CONTENTS OF
SFFFA, FFFB (VECTOR FETCH)

SETS, >< ANDKBITS

RESET MCU
HARDWARE

BEGIN AN \NSTRUCT\ON

STACK CPU
REGISTERS

SET X AND I BITS

FETCH VECTOR
$FFE4, FFES

L |

5-Feb-25—12:44 PM

EEL 4744

EEL4744C: 1P Apps

GCPU++ Resets
and Interrupts
Flow Chart (2/2)

* Processing flow out
of reset (part b)

University of Florida, EEL 4744
Drs. Schwartz & Arroyo

File 10

EEL 4744

GCPU++

Interrupt Priority
Resolution

* Interrupt priority resolution

EEL4744C: 1P Apps

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo

16

ANY |

INTERRUPT

8IT

Resets & Interrupts

PENDING
2

STACK CPU
REGISTERS
STACK CPU een
REGISTERS A
SET X AND | BITS
FETCH VECTOR
$FFER, FFEQ
YES STACK CPU
wai? REGISTERS
NO
STACK CPU YES swi?
REGISTERS
SET X AND [BITS o
FETCH VECTOR
$FFE6, FFE7
SETIBIT
RESTORE CPU NO RESOLVE INTERRUPT
REGISTERS PRIORITY AND FETCH
FROM STACK VECTOR FORHIGHEST
PENDING SOURCE
EXECUTE THIS (REFER TO FIGURE 52)
INSTRUCTION
\ >l
>
START NEXT
JA/ INSTRUCTION
SEQUENCE FLOW OUT OF FESETH

SETXBTINGCE

FEICHVECTOR
seFes Fres
FETOHVECTOR
FETGHVECTOR

s Fees

FEXCHVECTOR
Serrg Fir

FETCHVECTOR
SETEE FrEF

FETCHVECTOR
seres, e

FETGHVECTOR
PR

FETCHVECTOR
SerEe rEo

University of Florida, EEL 4744 — File 10

© Drs. Schwartz & Arroyo

<012 e
REFERTOFGURE
59

SPUROUS NTERRUPT — TAKE 1BQVEGTOR

FEXGHVECTOR
seees Fre

TG VECToR
SrrEa s
TG VECToR
Srveg Fres
FETGIVEGTOn
sereo e

FETGVECTOR
SEFOE FOF

FETCH VECTOR
SFHOG FFOD
FEXGHVECTOR

SO, 108

FETGHvECToR
§ero8 s

FETGHVECTOn
Ser08 0T

5

5-Feb-25—12:44 PM Resets & Interrupts

XMEGA: Interrupts

* Interrupts signal a change of state in peripherals (or inputs)

* Peripherals (and pins) can have one or more interrupts, and all are
individually enabled and configured

* When an interrupt is enabled and configured, it will generate an
interrupt request when the interrupt condition is present

* The programmable multilevel interrupt controller (PMIC) controls
the handling and prioritizing of interrupt requests

* When an interrupt request is acknowledged by the PMIC, the
program counter is set to point to the interrupt vector, and the
interrupt handler can be executed

* 3 interrupt levels: low, medium, high
> Within each level, the interrupt priority is based on the interrupt vector address
— Lower the address, the higher the priority

* Non-maskable interrupts (NMI) are available

File 10

{EEL 4744

XMEGA: Interrupts
Section 12

* Interrupts have a global enable (bit I in status register)
 Each interrupt level (low, medium, high) also has an enable
* When an interrupt is enabled and the interrupt condition is present,
the PMIC will receive the interrupt request
> Based on the interrupt level and interrupt priority of any ongoing interrupts,
the interrupt is either acknowledged or kept pending until it has priority
> When the interrupt request is acknowledged, the program counter is updated to
point to the interrupt vector
> After returning from the interrupt, program execution continues from where it
was before the interrupt occurred
* RETI (interrupt return) instruction must exist

at the end of each interrupt service routine (ISR)

EEL 4744 — File 10
Arroyo

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 9

5-Feb-25—12:44 PM Resets & Interrupts

E 0 | EEL 4744

XMEGA: Interrupts

* All interrupts have an interrupt associated flag

> When the interrupt condition is present, the interrupt flag will be
set even if the corresponding interrupt is not enabled
— This flag can be used for polling, even if the interrupt is not utilized

* For some interrupts in the XMEGA, the interrupt flag is
automatically cleared when executing the interrupt vector

> Some interrupt flags are not cleared when executing the interrupt
vector

> Some interrupt flags are cleared automatically when an
associated register is accessed (read or written)
> It never hurts to clear a flag, even if you do not need to!

» Writing a one to the interrupt flag will clear the flag

File 10

e EEL 4744 XMEGA: Interrupts

— Priority
« [f an interrupt condition occurs while another, higher
priority interrupt is executing or pending, the interrupt
flag will be set and remembered until the interrupt with
higher priority is complete
> If an interrupt condition occurs while the corresponding interrupt

is not enabled, the interrupt flag will be set and remembered until
the interrupt is enabled or the flag is cleared by software

« Similarly, if one or more interrupt conditions occur while
global interrupts are disabled, the corresponding interrupt
flag(s) will be set and remembered until global interrupts
are enabled

* All pending interrupts are executed according to their
order of priority

20

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 1 O

5-Feb-25—12:44 PM Resets & Interrupts

(1 {EEL 4744 [-Bit and SEI/CLI

EEL 4744C: uP Apps d00833 1 :
Section 3.14.9

* | — Global Interrupt Enable (NOT a mask)

>The global interrupt enable bit must be set for interrupts

to be enabled
— If the I bit is cleared, the interrupts are disabled

— This bit is not cleared by hardware after an interrupt has occurred
0 Then how come interrupts do not interrupt interrupts? Try it!
— Instructions can set (SEI) and clear (CLI) this bit

» SEI — Set Global Interrupt Enable Flag

>Executing this instruction will enable interrupts

* CLI — Clear Global Interrupt Enable Flag

>Executing this instruction will disable interrupts

ile 10

EEI Y EEL 4744 XMEGA: Non-Maskable
Interrupt (NMI)

* Non-maskable interrupts must be enabled before
they can be used

* An NMI will be executed regardless of the setting
of the I bit, and it will never change the I bit

* No other interrupts can interrupt a NMI handler

* If more than one NMI is requested at the same
time, priority is set according to the interrupt

vector address
>The lowest address has highest priority

22

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 1 1

5-Feb-25—12:44 PM Resets & Interrupts

I EEL 4744 XYMEGA: Interrupt
| execution of Instruction

[] |

Program Counter >< PC / e \N'jvnhéﬂ/mlfnhgw \:

"Instruction” >< inst ¥ "store PC" >/ JMP /:
s\

int ack ﬁ,rf %

; XMEGA: Interrupts

* The PMIC status register contains state information to
ensure that the PMIC returns to the correct interrupt level
after an RETI

> Returning from an interrupt will return the PMIC to the state it
had before entering the interrupt

* The status register (SREG) is NOT saved automatically
upon an interrupt request (unlike most other processors)

* The RET (subroutine return) instruction cannot be used
when returning from the interrupt handler routine, as this
will not return the PMIC to its correct state

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 1 2

5-Feb-25—12:44 PM Resets & Interrupts

EEL 4744
XMEGA: Interrupts

* An interrupt CANNOT be interrupted by another
interrupt of the same or lower level

> Example 1: A low-level interrupt will not be interrupted by any
other low-level interrupt

EEL4744C: 1P Apps

> Example 2: A medium-level interrupt will not be interrupted by
any low-level interrupt or medium-level interrupt, but could be
interrupted by a high-level interrupt

> Example 3: A high-level interrupt will not be interrupted by any
other interrupt

EEL 4744 XMEGA: Interrupt
EEL 4744C: 1P Apps d00833 1 N <
Controller Overview

 All interrupts and the reset vector have a separate program vector
address in the program memory space

* The lowest address ($0) in program memory space is the reset vector

* Each interrupt has control bits for enabling & setting interrupt level
> This is set in the control registers for each peripheral that can generate interrupts

Interrupt Controller

i doc8331:
P ooty Fig 12

Peripheralt| w0
INT ACK. | CPURETI
CPUINT ACK
e, NTLEVEL
| i CPUINTREQ
Peripheraln| nrrea |
INT ACK
e
LEVEL Enable

§I RL INTPRI

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo

26

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 1 3

5-Feb-25—12:44 PM Resets & Interrupts

{EEL 4744 XMEGA Reset & Interrupt
: Vector Locations

* The interrupt vector is the sum of the peripheral’s base interrupt
address (see next page) and the offset address for specific interrupts
in each peripheral

* Vector interrupt (or vector base) addresses are shown in doc8385,
Table 14-1 (on next pages)
> The program address is the word address, so the 2 addresses available for each

vector is long enough for a JMP and then an address (32-bits) or an RIMP an
address (16-bits)

* The complete interrupt vectors can also be found in the include file

that we always use in Assembly: ATxmegal28A1Udef.inc

> Search for “INTERRUPT VECTORS, ABSOLUTE ADDRESSES” in this file
to find a list of the interrupt vectors

> Excerpts are shown later in this document

{EEL 4744 XMEGA Reset & Interrupt

Vector Locations — Part 1/4
Table 14-1

Program address
(base address) Source Interrupt description

RESET

OSCF_INT_vect Crystal oscillator failure interrupt vector (NMI)
PORTC_INT_base Port C interrupt base

PORTR_INT _base Port R interrupt base

DMA_INT_base DMA controller interrupt base
RTC_INT_base Real time counter interrupt base
TWIG_INT_base Two-Wire interface on port C interrupt base
TCCO_INT _base Timer/counter 0 on port C interrupt base
TCC1_INT _base Timer/counter 1 on port C interrupt base
SPIC_INT_vect SPI on port C interrupt vector
USARTCO_INT base USART 0 on port C interrupt base

USARTC1_INT base USART 1 on port C interrupt base

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 1 4

5-Feb-25—12:44 PM Resets & Interrupts

E EEL 4744 XMEGA: Example
Interrupt Vectors

» Some example complete interrupt vectors from
atxmegal28aludef.inc atxmegal28aludef.inc

.equ OSC_OSCF _vect =2 ; Oscillator Failure Interrupt (NMI)

.equ PORTC INTO vect =4 ; External Interrupt O
.equ PORTC INT1 vect = 6 ; External Interrupt 1

.equ PORTR INTO vect =8 ; External Interrupt O
.equ PORTR INT1 vect= 10 ; External Interrupt 1

.equ TCCO_OVF _vect =28 ; Overflow Interrupt

.equ TCCO_ERR _vect =30 ; Error Interrupt

.equ TCCO_CCA_vect =32 ; Compare or Capture A Interrupt
.equ TCCO_CCB_vect =34 ; Compare or Capture B Interrupt
.equ TCCO_CCC _vect =36 ; Compare or Capture C Interrupt
.equ TCCO_CCD_vect =38 ; Compare or Capture D Interrupt

I EEL 4744 XMEGA: More Example

EEL4744C: 1P Apps

Interrupt Vectors

» Some example complete interrupt vectors from

atxmegal28aludef.inc atxmegal28aludef.inc

.equ USARTCO_RXC vect =50 ; Reception Complete Interrupt
.equ USARTCO_DRE vect =52 ; Data Register Empty Interrupt
.equ USARTCO_TXC vect =54 ; Transmission Complete Interrupt

.equ USARTC1 RXC vect =56 ; Reception Complete Interrupt
.equ USARTC1 DRE vect =58 ; Data Register Empty Interrupt
.equ USARTC1_TXC vect = 60 ; Transmission Complete Interrupt

.equ ADCB_CHO vect =78 ; Interrupt 0
.equ ADCB_CHI1 vect =80 ; Interrupt 1
.equ ADCB_CH2 vect = 82 ; Interrupt 2
.equ ADCB_CH3 vect =84 ; Interrupt 3

.equ USB_BUSEVENT vect =250 ; SOF, suspend, resume, reset bus event ...
.equ USB_ TRNCOMPL vect =252 ; Transaction complete interrupt

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 1 5

5-Feb-25—12:44 PM Resets & Interrupts

1) | EEL 4744
— XMEGA: Port Interrupt Types

: doc8331:
* Several Sensing Modes

>Synchronous, Full Asynchronous, Limited
Asynchronous

> All have the following
— Rising Edge
— Falling Edge
— Any Edge
— Low Level

EEL 4744 — File 10
rroyo

1) | EEL 4744
o does33l | XIMEGA:: Interrupt Levels

Section 12.5

* The interrupt level is independently selected for
each interrupt source

* For any interrupt request, the PMIC also receives
the interrupt level for the interrupt

Interrupt Level Group doc8331:
Configuration Configuration Description Table 12-1

Interrupt disabled

Low-level interrupt

Mid-level interrupt

High-level interrupt

32

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 1 6

5-Feb-25—12:44 PM Resets & Interrupts

FEIREEL 4744 XMEGA: Interrupt

R | doc8331: . .
Priority

 Within each interrupt level, all interrupts have a priority system

* When several interrupt requests are pending, the order in which
interrupts are acknowledged is decided both by the level and the
priority of the interrupt request

* Interrupts can be organized in a static or dynamic (round-robin)
priority scheme

* High- and medium-level interrupts and the NMI will always have
static priority

* For low-level interrupts, static or dynamic priority scheduling can
be selected

» We will NOT discuss dynamic (round-robin) priority

EEEL 4744 XMEGA: Interrupt
Static Priority

* Interrupt vectors (IVEC) are located at fixed addresses

* For static priority, the interrupt vector address decides the priority
within one interrupt level, where the lowest interrupt vector address
has the highest priority

* Refer to the device datasheet (doc8385, Table 14-1) for the interrupt
vector table with the base address for all modules and peripherals
with interrupt capability

* Refer to the interrupt vector summary of each module and
peripheral in doc8331 for a list of interrupts and their corresponding
offset address within the different modules and peripherals

* Refer to the include file, atxmegal28aludef.inc, for all the
interrupt vectors

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 1 7

5-Feb-25—12:44 PM Resets & Interrupts

{4 EEL 4744 XMEGA: Interrupt
Static Priority

 For static priority, the Lowest Address Highest Priority
interrupt vector address A
decides the priority within
one interrupt level, where
the lowest interrupt vector
address has the highest
priority

HighestAddress Lowest Priority

FEIREEL 4744 YMEGA: Interrupt
6L 4744C: uP Apps See doc8331, c
Control Register

« HILVLEN: High-level Interrupt Enable
> When this bit is set, all high-level interrupts are enabled. If this bit is cleared,
high-level interrupt requests will be ignored.
* MEDLVLEN: Medium-level Interrupt Enable
> When this bit is set, all medium-level interrupts are enabled. If this bit is
cleared, medium-level interrupt requests will be ignored.
* LOLVLEN: Low-level Interrupt Enable
> When this bit is set, all low-level interrupts are enabled. If this bit is cleared,
low-level interrupt requests will be ignored.

PMIC CTRL

6 2 1 0
IVSEL HILVLEN MEDLVLEN LOLVLEN I
RW RW RW RW
0 0 0 0

EL 4744 — File 10
& Arroyo

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 1 8

5-Feb-25—12:44 PM Resets & Interrupts

FEIREEL 4744 YMEGA: Interrupt
EeL a724C: b Apps See doc8331, -
Control Register

* RREN: Round-robin Scheduling Enable (not normally used)
> When the RREN bit is set, the round-robin scheduling scheme is enabled for
low-level interrupts. When this bit is cleared, the priority is static according to
interrupt vector address, where the lowest address has the highest priority.

* IVSEL: Interrupt Vector Select (not normally used)
> When the IVSEL bit is cleared (zero), the interrupt vectors are placed at the
start of the application section in flash. When this bit is set (one), the interrupt
vectors are placed in the beginning of the boot section of the flash. Refer to the
device datasheet for the absolute address. This bit is protected by the
configuration change protection mechanism.

PMIC CTRL

5
IVSEL HILVLEN
RW
0

{EEL 4744 PINnCTRL - Pinn

| Configuration Register

* Bit 7 — SRLEN: Slew Rate Limit Enable (not normally used)

> Setting this bit will enable slew rate limiting on pin n
* Bit 6 — INVEN: Inverted I/O Enable (for active-low pins)

> Setting this bit will enable inverted output and input data on pin n

PORTx_PINOCTRL

7 6

I SRLEN INVEN

Read/\Write RIW RIW

Initial Value 0 0

University EEL 4744 — File 10
© Drs. Schwartz & Arroyo

38

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 1 9

5-Feb-25—12:44 PM Resets & Interrupts

fJEEL4744 PINnCTRL — Pinn

| Configuration Register

* Bit 5:3 — OPC: Output
and Pull Configuration Totem-pol N/A
See doc8331, Table 13-5

_ Totem) BusiE el 001 Totem-pol ~ Bus-keeper
down, pull-up, wired- 010 Totem-pol Pull-down (on input)
OR, wired-AND, ... 011 Totem-pol Pull-up (on input)
100 Wired-OR N/A
101 Wired-AND N/A
110 Wired-OR Pull-down
PORTX_PINOCTRL 111 Wired-AND Pull-up doc8331:
3 2 ! 0 Table 13-5
[| e orotzar isoa] procra

nivel Initial Value (1] 0 o 0 0 0 (] (1]

fJEEL4744 PINnCTRL - Pinn

| Configuration Register

 Bit 2:0 — ISC|2:0]:
Input/Sense Configuration 000 BothEdges Both edges
> The sense configuration decides it Rising Rising edge
how the pin can trigger port
interrupts and events
> If the input buffer is disabled, the

input cannot be read in the IN
register 111 Input_ Disabled

010 Falling Falling edge
011 Level Low
100-110 Reserved

PORTx PINOCTRL Disabled
— Table 13-6 §
Bit 7 6 5 4 3 2 1 0
I SRLEN INVEN OPC[2:0] ISC[2:0] I PINNCTRL
Read/\Write RAW RW RW RIW RW RAW RW RAW

Initial Value 0 0

40

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 2 O

5-Feb-25—12:44 PM Resets & Interrupts

* EEL 4744 INTOMASK — Interrupt

0 Mask register
. INTOMSK[7 :0]: Interrupt 0 Mask Register

>These bits are used to mask which pins can be used as
sources for port interrupt 0

>Ifa 1 is written to bit n in PORTx _INTOMASK, pin n is
used as source for port interrupt 0

>The input sense configuration for each pin is decided by
the PINnCTRL registers

* A similar INTIMASK exists

Bit

PORTx_INTOMASK

+0x0A

Read/Write

Initial Value

§EEL 4744 INTCTRL — Interrupt

Control register

* Bit 3:2/1:0 — INTnLVL[l:O]: Interrupt n Level
>These bits enable port interrupt n (n =0 or 1) and select
the interrupt level as described in “Interrupts and

Programmable Multilevel Interrupt Controller”
Interrupt Level

Configuration Description doc8331:
Interrupt disabled I

Low-level interrupt

Mid-level interrupt

High-level interrupt PORTx INTCTRL

3 2 1 0

INT1LVL[1:0] INTOLVL[1:0] I
Read/Write RW RW RW RW
Initial Value 0 0 0 0
University of Florida, EEL 47:

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 2 1

5-Feb-25—12:44 PM Resets & Interrupts

4 EEL 4744 INTFLAGS: Interrupt

| Flags Register

* Bit 1:0 — INTnIF: Interrupt n Flag
>The INTnIF flag is set when a pin change/state matches
the pin’s input sense configuration, and the pin is set as
source for port interrupt n

>Writing a one to this flag's bit location will clear the
flag

PORTx_INTFLAGS

Bit 1 0

+0x0C | INT1IF I INTOIF I INTFLAGS

Read/\Write

Initial Value

Iniversity of Florida, EEL 4744 — File 10
oyo

E 0 | EEL 4744

EEL4744C: 1P Apps

External Interrupt Example

 Simulate this example

>This program will generate an external interrupt on low
level pin on PORTD_PINO
> For demonstration, use the following Watch:
(char)PortD IN
>Use simulator (or board) to demonstrate
—Use F5 (NOT F11, i.e., do NOT single step) and pause,
changing the value of PDO0 as follows:
0 In IO View (Debug | Windows | I/O), use PORTD

» IfPDO is a 0, should get an interrupt
» IfPDO is a 1, should NOT get an interrupt

External_lhﬁerrupt.asm

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 22

5-Feb-25—12:44 PM Resets & Interrupts

E(JEEL 4744 Must Save the Status

Register in an ISR

* In almost all cases, the Status Register MUST be
saved at the beginning of an ISR

>An ISR should almost always begin with:

;Always (almost) do next 3 lines at the beginning of ISRs
push R16

lds R1l6, CPU SREG
push R16

>1If an ISR begins with above, then should end with:
; Always (almost) do next 4 lines at the end of ISRs

pop R16

sts CPU SREG, R16

pop R16

reti

ile 10

E 0 | EEL 4744

EEL 4744C: UP AppS

Bouncing

* See Lecture 00: Bouncing

46

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo 2 3

5-Feb-25—12:44 PM Resets & Interrupts

bl EEL 4744

EEL4744C: 1P Apps

Interrupt Processing Example

This circuit has
a bouncing
problem! The
switch must
stop bouncing
before PBO is Momentary

cleared. contact switch

+ ASSUMPTIONS:

1. IRQ is configured to be level sensitive (requires pull-up resistor)

2. The counter need only count up to 255 pulses (8-bit counter);
solutions online are for the GCPU++

44— File 10
rroyo.

E | EEL 4744

EEL4744C: 1P Apps

The End!

EL 4744 — File 10
7 & Arroyo

University of Florida, EEL 4744 — File 10
© Drs. Schwartz & Arroyo

24

