
5-Feb-25—12:44 PM

1
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

1
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Menu
• Interrupt motivation (polling example)
• Interrupt description
• Interrupt-driven I/O

> Interrupt Protocol
> Preemptive-Resume Priority Interrupts
> Vectored Interrupt

• Resets and Interrupts in XMEGA, GCPU++
> Resets and Interrupts Priority
> Interrupt and Reset Vector Assignments

– Pseudo-vector assignments
> Reset and Interrupt Processing
> Interrupt vector and pseudo-vector examples

• XMEGA interrupt details

Look into my ...

See readings & examples on web-site:
Textbook (ch 10), doc8331 (sec 12-14), 
doc8385 (sec 14), External_Interrupt.asm

EEL 4744

2
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Polling Example

• You used polling in lab 2 when you are tasked to 
change some outputs based on the value of a 
specific input

• In the polling method, the P “polls” an input or 
the status of a bit (or group of bits)
>If the bit(s) have the proper value(s), then an action 

should be taken
>If the bit(s) do not have the proper value(s), then the 

bit(s) will be polled again, and again, and again, …

1

2



5-Feb-25—12:44 PM

2
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

3
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

• In the interrupt-driven alternative to polling, a 
peripheral or an I/O device that is ready for service 
indicates so by “interrupting” the P

• If the device is allowed to interrupt, then the P will 
complete the execution of the current instruction, 
save the processor status (the CPU registers, except 
the SP) on the stack, and branch to a special location 
(interrupt vector address) to execute a special 
subroutine (ISR) that will service the interrupting 
device. 

Interrupt Description

PCL, PCH, YL, YH, XL, XH, A, B, and CCRFor GCPU++:

PCL, PCM, PCH For XMEGA*: *Careful! XMEGA 
stores NO status info

EEL 4744

4
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

• Look at your phone
>Imagine it never making a noise, but having to look at it 

to know if someone is calling, texting, etc.
– This is called polling

>Instead, your phone makes a sound and/or vibrates to let 
you know that something new is available
– This is called interrupting

Polling or Interrupts?

Normal Processing Interrupt Service Routine

blah, blah...

3

4



5-Feb-25—12:44 PM

3
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

5
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

P Interrupts

• When a P peripheral needs an action, it can 
generate an interrupt
>The interrupt stops the processor from whatever it was 

doing and allows an important action to start
>Then, special interrupt instructions (within something 

called an interrupt service routine or ISR), will run
>When the ISR is complete, the P goes back to what it 

was doing
• There are two systems that will generate an 

interrupt in our early labs (and others are possible):
>External Pins
>Timer

EEL 4744

6
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Interrupt-
driven I/O

• Processing interrupts

Doty: Fig 6.7-6

5

6



5-Feb-25—12:44 PM

4
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

7
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Interrupt-driven I/O

• Daisy-chain priority and polling logic

Doty: Fig 6.7-7

EEL 4744

8
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Interrupt-driven I/O
• Generation 

of a device 
interrupt 
vector 
address

Doty: Fig 6.7-8

Vector Address

7

8



5-Feb-25—12:44 PM

5
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

9
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Interrupt-
driven I/O

• Determining interrupting 
device through software 
polling

Doty: Fig 6.7-9

EEL 4744

10
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Interrupt-
driven I/O

• Interrupt service 
routine flowchart
>Vectored interrupts (a)
>Software polling (b)

Doty: Fig 6.7-10

9

10



5-Feb-25—12:44 PM

6
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

11
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

GCPU++
Interrupt 
and Reset 
Vectors

Vec Addr Interrupt Source
FFD6, D7 Serial Comm. Interface (SCI)
FFD8, D9 Serial Peripheral Interface (SPI)
FFDA, DB Pulse Accumulator Input Edge
FFDC, DD Pulse Accumulator Overflow
FFDE, DF Timer Overflow
FFE0, E1 Timer Output Compare 5
FFE2, E3 Timer Output Compare 4
FFE4, E5 Timer Output Compare 3
FFE6, E7 Timer Output Compare 2
FFE8, E9 Timer Output Compare 1
FFEA, EA Timer Input Capture 3
FFEC, ED Timer Input Capture 2
FFEE, EF Timer Input Capture 1
FFF0, F1 Real Time Interrupt
FFF2, F3 IRQ
FFF4, F5 XIRQ
FFF6, F7 Software Interrupt (SWI)
FFF8, F9 Illegal Opcode
FFFA, FB Computer Operating Properly (COP)
FFFC, FD Clock Monitor
FFFE, FF RESET

EEL 4744

12
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

GCPU++ EVBU 
Interrupt Pseudo-

Vectors (with 
BUFFALO)

Pseudo Vector Interrupt Source
$00C4-$00C6 Serial Comm. Interface (SCI)
$00C7-$00C9 Serial Peripheral Interface (SPI)
$00CA-$00CC Pulse Accumulator Input Edge
$00CD-$00CF Pulse Accumulator Overflow
$00DO-$00D2 Timer Overflow
$00D3-$00D5 Timer Output Compare 5
$00D6-$00D8 Timer Output Compare 4
$00D9-$00DB Timer Output Compare 3
$00DC-$00DE Timer Output Compare 2
$00DF-$00E1 Timer Output Compare 1
$00E2-$00E4 Timer Input Capture 3
$00E5-$00E7 Timer Input Capture 2
$00E8-$00EA Timer Input Capture 1
$00EB-$00ED Real Time Interrupt
$00EE-$00F0 IRQ
$00F1-$00F3 XIRQ
$00F4-$00F6 Software Interrupt (SWI)
$00F7-$00F9 Illegal Opcode
$00FA-$00FC Computer Operating Properly (COP)
$00FD-$00FF Clock Monitor

BUFFALO memory dump:
FFD6: 00 C4
FFD8: 00 C7 00 CA 00 CD 00 D0 
FFE0: 00 D3 00 D6 00 D9 00 DC 
FFE8: 00 DF 00 E2 00 E5 00 E8 
FFF0: 00 EB 00 EE 00 F1 00 F4
FFF8: 00 F7 00 FA 00 FD B6 00

Reset 
Pseudo 
Vector

Vector Addr Interrupt Source
FFD6, D7 Serial Comm. Interface (SCI)
FFE0, E1 Timer Output Compare 5
FFF0, F1 Real Time Interrupt
FFF2, F3 IRQ
FFFE, FF RESET

11

12



5-Feb-25—12:44 PM

7
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

13
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Interrupt Vectors & Interrupt 
Pseudo-vectors for GCPU++

with BUFFALO

00
FA
00
FD
B6
00

FFFA
FFFB
FFFC
FFFD
FFFE
FFFF

COP_H
COP_L
Clock_Mon _H
Clock_Mon _L
Reset_H
Reset_L

00
C4

FFD6
FFD7

SCI_H
SCI_L

7E
COP_ISR_H
COP_ISR_L

7E
CM_ISR_H
CM_ISR_L

COP_Mon_JMP
COP_Mon_H
COP_Mon_L

7E
SCI_ISR_H

SCI_JMP
SCI_H

SCI_ISR_L SCI_L

Clock_Mon_JMP
Clock_Mon_H
Clock_Mon_L

Interrupt Vectors Pseudo-Interrupt Vectors

00FA
00FB
00FC
00FD
00FE
00FF

00C4
00C5
00C6

JMP SCI_ISR

JMP  COP_ISR

EEL 4744

14
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

GCPU++ Resets 
and Interrupts 

Flow Chart (1/2)

• Processing flow out 

of reset (part a)

13

14



5-Feb-25—12:44 PM

8
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

15
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

GCPU++ Resets 
and Interrupts 

Flow Chart (2/2)

• Processing flow out 

of reset (part b)

TD: Fig 5-1b

EEL 4744

16
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

GCPU++
Interrupt Priority 

Resolution
• Interrupt priority resolution

15

16



5-Feb-25—12:44 PM

9
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

17
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupts

• Interrupts signal a change of state in peripherals (or inputs)
• Peripherals (and pins) can have one or more interrupts, and all are 

individually enabled and configured
• When an interrupt is enabled and configured, it will generate an 

interrupt request when the interrupt condition is present
• The programmable multilevel interrupt controller  (PMIC) controls 

the handling and prioritizing of interrupt requests
• When an interrupt request is acknowledged by the PMIC, the 

program counter is set to point to the interrupt vector, and the 
interrupt handler can be executed

• 3 interrupt levels: low, medium, high
> Within each level, the interrupt priority is based on the interrupt vector address

– Lower the address, the higher the priority

• Non-maskable interrupts (NMI) are available

doc8331: 
Section 12

EEL 4744

18
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupts

• Interrupts have a global enable (bit I in status register)
• Each interrupt level (low, medium, high) also has an enable
• When an interrupt is enabled and the interrupt condition is present, 

the PMIC will receive the interrupt request
> Based on the interrupt level and interrupt priority of any ongoing interrupts, 

the interrupt is either acknowledged or kept pending until it has priority
> When the interrupt request is acknowledged, the program counter is updated to 

point to the interrupt vector
> After returning from the interrupt, program execution continues from where it 

was before the interrupt occurred

• RETI (interrupt return) instruction must exist 
at the end of each interrupt service routine (ISR)

doc8331: 
Section 12

17

18



5-Feb-25—12:44 PM

10
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

19
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupts
• All interrupts have an interrupt associated flag 

> When the interrupt condition is present, the interrupt flag will be 
set even if the corresponding interrupt is not enabled
– This flag can be used for polling, even if the interrupt is not utilized

• For some interrupts in the XMEGA, the interrupt flag is 
automatically cleared when executing the interrupt vector
> Some interrupt flags are not cleared when executing the interrupt 

vector
> Some interrupt flags are cleared automatically when an 

associated register is accessed (read or written)
> It never hurts to clear a flag, even if you do not need to!

• Writing a one to the interrupt flag will clear the flag

doc8331: 
Section 12

EEL 4744

20
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupts 
Priority

• If an interrupt condition occurs while another, higher 
priority interrupt is executing or pending, the interrupt 
flag will be set and remembered until the interrupt with 
higher priority is complete
> If an interrupt condition occurs while the corresponding interrupt 

is not enabled, the interrupt flag will be set and remembered until 
the interrupt is enabled or the flag is cleared by software

• Similarly, if one or more interrupt conditions occur while 
global interrupts are disabled, the corresponding interrupt 
flag(s) will be set and remembered until global interrupts 
are enabled

• All pending interrupts are executed according to their 
order of priority

doc8331: 
Section 12

19

20



5-Feb-25—12:44 PM

11
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

21
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

I-Bit and SEI/CLI 

• I – Global Interrupt Enable (NOT a mask)
>The global interrupt enable bit must be set for interrupts 

to be enabled
– If the I bit is cleared, the interrupts are disabled
– This bit is not cleared by hardware after an interrupt has occurred
� Then how come interrupts do not interrupt interrupts? Try it!

– Instructions can set (SEI) and clear (CLI) this bit

• SEI – Set Global Interrupt Enable Flag
>Executing this instruction will enable interrupts

• CLI – Clear Global Interrupt Enable Flag 
>Executing this instruction will disable interrupts

doc8331: 
Section 3.14.9

EEL 4744

22
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Non-Maskable
Interrupt (NMI)

• Non-maskable interrupts must be enabled before 
they can be used

• An NMI will be executed regardless of the setting 
of the I bit, and it will never change the I bit

• No other interrupts can interrupt a NMI handler
• If more than one NMI is requested at the same 

time, priority is set according to the interrupt 
vector address
>The lowest address has highest priority

doc8331: 
Section 12

21

22



5-Feb-25—12:44 PM

12
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

23
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupt 
execution of Instructiondoc8331: 

Figure 12-2

EEL 4744

24
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupts
• The PMIC status register contains state information to 

ensure that the PMIC returns to the correct interrupt level 
after an RETI
> Returning from an interrupt will return the PMIC to the state it 

had before entering the interrupt
• The status register (SREG) is NOT saved automatically

upon an interrupt request (unlike most other processors)
• The RET (subroutine return) instruction cannot be used 

when returning from the interrupt handler routine, as this 
will not return the PMIC to its correct state

doc8331: 
Section 12

23

24



5-Feb-25—12:44 PM

13
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

25
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupts
• An interrupt CANNOT be interrupted by another 

interrupt of the same or lower level
> Example 1: A low-level interrupt will not be interrupted by any 

other low-level interrupt
> Example 2: A medium-level interrupt will not be interrupted by 

any low-level interrupt or medium-level interrupt, but could be 
interrupted by a high-level interrupt

> Example 3: A high-level interrupt will not be interrupted by any
other interrupt

EEL 4744

26
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupt 
Controller Overview

• All interrupts and the reset vector have a separate program vector 
address in the program memory space

• The lowest address ($0) in program memory space is the reset vector
• Each interrupt has control bits for enabling & setting interrupt level

> This is set in the control registers for each peripheral that can generate interrupts

doc8331: 
Fig 12-1

doc8331: 
Section 12.4

25

26



5-Feb-25—12:44 PM

14
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

27
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA Reset & Interrupt 
Vector Locations

• The interrupt vector is the sum of the peripheral’s base interrupt 
address (see next page) and the offset address for specific interrupts 
in each peripheral

• Vector interrupt (or vector base) addresses are shown in doc8385, 
Table 14-1 (on next pages)
> The program address is the word address, so the 2 addresses available for each 

vector is long enough for a JMP and then an address (32-bits) or an RJMP an 
address (16-bits)

• The complete interrupt vectors can also be found in the include file 
that we always use in Assembly: ATxmega128A1Udef.inc
> Search for “INTERRUPT VECTORS, ABSOLUTE ADDRESSES” in this file 

to find a list of the interrupt vectors
> Excerpts are shown later in this document

doc8385: 
Section 14

EEL 4744

28
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA Reset & Interrupt 
Vector Locations – Part 1/4doc8385: 

Table 14-1

27

28



5-Feb-25—12:44 PM

15
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

29
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Example 
Interrupt Vectors

• Some example complete interrupt vectors from 
atxmega128a1udef.inc

.equ OSC_OSCF_vect = 2 ; Oscillator Failure Interrupt (NMI)

.equ PORTC_INT0_vect = 4 ; External Interrupt 0

.equ PORTC_INT1_vect = 6 ; External Interrupt 1

.equ PORTR_INT0_vect = 8 ; External Interrupt 0

.equ PORTR_INT1_vect = 10 ; External Interrupt 1

.equ TCC0_OVF_vect = 28 ; Overflow Interrupt

.equ TCC0_ERR_vect = 30 ; Error Interrupt

.equ TCC0_CCA_vect = 32 ; Compare or Capture A Interrupt

.equ TCC0_CCB_vect = 34 ; Compare or Capture B Interrupt

.equ TCC0_CCC_vect = 36 ; Compare or Capture C Interrupt

.equ TCC0_CCD_vect = 38 ; Compare or Capture D Interrupt

atxmega128a1udef.inc

EEL 4744

30
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: More Example 
Interrupt Vectors

• Some example complete interrupt vectors from 
atxmega128a1udef.inc

.equ USARTC0_RXC_vect = 50 ; Reception Complete Interrupt

.equ USARTC0_DRE_vect = 52 ; Data Register Empty Interrupt

.equ USARTC0_TXC_vect = 54 ; Transmission Complete Interrupt

.equ USARTC1_RXC_vect = 56 ; Reception Complete Interrupt

.equ USARTC1_DRE_vect = 58 ; Data Register Empty Interrupt

.equ USARTC1_TXC_vect = 60 ; Transmission Complete Interrupt

.equ ADCB_CH0_vect = 78 ; Interrupt 0

.equ ADCB_CH1_vect = 80 ; Interrupt 1

.equ ADCB_CH2_vect = 82 ; Interrupt 2

.equ ADCB_CH3_vect = 84 ; Interrupt 3

.equ USB_BUSEVENT_vect = 250 ; SOF, suspend, resume, reset bus event …

.equ USB_TRNCOMPL_vect = 252 ; Transaction complete interrupt

atxmega128a1udef.inc

29

30



5-Feb-25—12:44 PM

16
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

31
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Port Interrupt Types
• Several Sensing Modes

>Synchronous, Full Asynchronous, Limited 
Asynchronous

>All have the following
– Rising Edge
– Falling Edge
– Any Edge
– Low Level

doc8331: 
Section 13.6

EEL 4744

32
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupt Levels
• The interrupt level is independently selected for 

each interrupt source
• For any interrupt request, the PMIC also receives 

the interrupt level for the interrupt

Description
Group

Configuration
Interrupt Level
Configuration 

Interrupt disabledOff00

Low-level interruptLo01

Mid-level interruptMed10

High-level interruptHi11

doc8331: 
Section 12.5

doc8331: 
Table 12-1

31

32



5-Feb-25—12:44 PM

17
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

33
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupt 
Priority

• Within each interrupt level, all interrupts have a priority system
• When several interrupt requests are pending, the order in which 

interrupts are acknowledged is decided both by the level and the 
priority of the interrupt request

• Interrupts can be organized in a static or dynamic (round-robin) 
priority scheme

• High- and medium-level interrupts and the NMI will always have 
static priority

• For low-level interrupts, static or dynamic priority scheduling can 
be selected

• We will NOT discuss dynamic (round-robin) priority

doc8331: 
Section 12.6

EEL 4744

34
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupt 
Static Priority

• Interrupt vectors (IVEC) are located at fixed addresses
• For static priority, the interrupt vector address decides the priority 

within one interrupt level, where the lowest interrupt vector address 
has the highest priority

• Refer to the device datasheet (doc8385, Table 14-1) for the interrupt 
vector table with the base address for all modules and peripherals 
with interrupt capability

• Refer to the interrupt vector summary of each module and 
peripheral in doc8331 for a list of interrupts and their corresponding 
offset address within the different modules and peripherals

• Refer to the include file,  atxmega128a1udef.inc, for all the 
interrupt vectors

doc8331: 
Section 12.6

33

34



5-Feb-25—12:44 PM

18
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

35
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupt 
Static Priority

• For static priority, the 
interrupt vector address 
decides the priority within 
one interrupt level, where 
the lowest interrupt vector 
address has the highest 
priority

doc8331: 
Figure 12-3

EEL 4744

36
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupt 
Control Register

• HILVLEN: High-level Interrupt Enable
> When this bit is set, all high-level interrupts are enabled. If this bit is cleared, 

high-level interrupt requests will be ignored.

• MEDLVLEN: Medium-level Interrupt Enable
> When this bit is set, all medium-level interrupts are enabled. If this bit is 

cleared, medium-level interrupt requests will be ignored.

• LOLVLEN: Low-level Interrupt Enable
> When this bit is set, all low-level interrupts are enabled. If this bit is cleared, 

low-level interrupt requests will be ignored.

See doc8331, 
Section 12.8 

PMIC_CTRL

35

36



5-Feb-25—12:44 PM

19
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

37
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

XMEGA: Interrupt 
Control Register

• RREN: Round-robin Scheduling Enable (not normally used)
> When the RREN bit is set, the round-robin scheduling scheme is enabled for 

low-level interrupts. When this bit is cleared, the priority is static according to 
interrupt vector address, where the lowest address has the highest priority.

• IVSEL: Interrupt Vector Select (not normally used)
> When the IVSEL bit is cleared (zero), the interrupt vectors are placed at the 

start of the application section in flash. When this bit is set (one), the interrupt 
vectors are placed in the beginning of the boot section of the flash. Refer to the 
device datasheet for the absolute address. This bit is protected by the 
configuration change protection mechanism.

See doc8331, 
Section 12.8 

PMIC_CTRL

EEL 4744

38
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

PINnCTRL – Pin n 
Configuration Register

• Bit 7 – SRLEN: Slew Rate Limit Enable (not normally used)

> Setting this bit will enable slew rate limiting on pin n
• Bit 6 – INVEN: Inverted I/O Enable (for active-low pins)

> Setting this bit will enable inverted output and input data on pin n

doc8331: 
Section 13.13.15

PORTx_PIN0CTRL

37

38



5-Feb-25—12:44 PM

20
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

39
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

PINnCTRL – Pin n 
Configuration Register

• Bit 5:3 – OPC: Output 
and Pull Configuration 
See doc8331, Table 13-5

– Totem, Bus-keeper, pull-
down, pull-up, wired-
OR, wired-AND, …

doc8331: 
Section 13.13.15

PORTx_PIN0CTRL

Description 
Pull config

Description 
Pull configOPC[2:0]

N/ATotem-pol000

Bus-keeperTotem-pol001

Pull-down (on input)Totem-pol010

Pull-up (on input)Totem-pol011

N/AWired-OR100

N/AWired-AND101

Pull-downWired-OR110

Pull-upWired-AND111
doc8331: 
Table 13-5

EEL 4744

40
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

PINnCTRL – Pin n 
Configuration Register

• Bit 2:0 – ISC[2:0]: 
Input/Sense Configuration
> The sense configuration decides 

how the pin can trigger port 
interrupts and events

> If the input buffer is disabled, the 
input cannot be read in the IN 
register

doc8331: 
Section 13.13.15

Description
Group 
ConfigISC[2:0]

Both edgesBothEdges000

Rising edgeRising001

Falling edgeFalling010

LowLevel011

Reserved100-110

DisabledInput_
Disabled

111

PORTx_PIN0CTRL doc8331: 
Table 13-6

39

40



5-Feb-25—12:44 PM

21
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

41
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

INT0MASK – Interrupt 
0 Mask register

• INT0MSK[7:0]: Interrupt 0 Mask Register
>These bits are used to mask which pins can be used as 

sources for port interrupt 0
>If a 1 is written to bit n in PORTx_INT0MASK, pin n is 

used as source for port interrupt 0
>The input sense configuration for each pin is decided by 

the PINnCTRL registers
• A similar INT1MASK exists

doc8331: 
Section 13.13.11

PORTx_INT0MASK

EEL 4744

42
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

INTCTRL – Interrupt 
Control register

• Bit 3:2/1:0 – INTnLVL[1:0]: Interrupt n Level
>These bits enable port interrupt n (n = 0 or 1) and select 

the interrupt level as described in “Interrupts and 
Programmable Multilevel Interrupt Controller”

doc8331: 
Section 13.13.11

PORTx_INTCTRL

Description
Interrupt Level
Configuration 

Interrupt disabled00

Low-level interrupt01

Mid-level interrupt10

High-level interrupt11

doc8331: 
Table 12-1

41

42



5-Feb-25—12:44 PM

22
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

43
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

INTFLAGS: Interrupt 
Flags Register

• Bit 1:0 – INTnIF: Interrupt n Flag
>The INTnIF flag is set when a pin change/state matches 

the pin’s input sense configuration, and the pin is set as 
source for port interrupt n

>Writing a one to this flag's bit location will clear the 
flag

doc8331: 
Section 13.13.13

PORTx_INTFLAGS

EEL 4744

44
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

External Interrupt Example
• Simulate this example

>This program will generate an external interrupt on low 
level pin on PORTD_PIN0

> For demonstration, use the following Watch: 
*(char*)PortD_IN

>Use simulator (or board) to demonstrate
– Use F5 (NOT F11, i.e., do NOT single step) and pause, 

changing the value of PD0 as follows:
� In IO View (Debug | Windows | I/O), use PORTD

• If PD0 is a 0, should get an interrupt
• If PD0 is a 1, should NOT get an interrupt

External_Interrupt.asm

43

44



5-Feb-25—12:44 PM

23
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

45
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Must Save the Status 
Register in an ISR

• In almost all cases, the Status Register MUST be 
saved at the beginning of an ISR
>An ISR should almost always begin with:

;Always (almost) do next 3 lines at the beginning of ISRs
push R16
lds R16, CPU_SREG
push R16

>If an ISR begins with above, then should end with:
; Always (almost) do next 4 lines at the end of ISRs

pop R16
sts CPU_SREG, R16
pop R16
reti

EEL 4744

46
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Bouncing
• See Lecture 00: Bouncing

45

46



5-Feb-25—12:44 PM

24
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Resets & Interrupts

EEL 4744

47
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

Interrupt Processing Example

• ASSUMPTIONS:
1. IRQ is configured to be level sensitive (requires pull-up resistor)
2. The counter need only count up to 255 pulses (8-bit counter);

solutions online are for the GCPU++

This circuit has 
a bouncing 

problem!  The 
switch must 

stop bouncing 
before PB0 is 

cleared.

PB0

Vcc
J

Q

Q

K

SET

CLR

IRQ(L)

Vcc
Vcc

Momentary 
contact switch

EEL 4744

48
University of Florida, EEL 4744 – File 10

© Drs. Schwartz & Arroyo

The End!

47

48


